International Journal of Pharmaceutical and Clinical Research 2025; 7(2): 185-195

ISSN Print: 2664-7591 ISSN Online: 2664-7605 Impact Factor: RJIF 8-16 IJPCR 2025; 7(2): 185-195 www.pharmaceuticaljournal.in Received: 07-08-2025 Accepted: 09-09-2025

B Saijyothi

East Point College of Pharmacy, Janna Prabha, East Point Campus, Virgo Nagar Post, Avalahalli, Bengaluru Karnataka, India

Urolithiasis redefined: Advances in risk stratification, prevention, and emerging therapies

B Saijyothi

DOI: https://www.doi.org/10.33545/26647591.2025.v7.i2c.153

Abstract

Kidney-stone disease (nephrolithiasis) has transitioned from a surgical oddity to one of the fastest-growing non-communicable disorders, accounting for an estimated 67 million new symptomatic episodes and 1.3 million disability-adjusted life-years in 2021. Incidence is accelerating under the combined pressures of global warming, dietary Westernisation and population ageing, yet nearly half of the burden is theoretically preventable. This state-of-the-art review distils evidence published between 2019 and mid-2025 across epidemiology, pathogenesis, risk stratification and management, and maps a future research agenda.

We first trace the striking geographic and demographic heterogeneity of nephrolithiasis, highlighting a latitude-linked "stone belt" where crude annual incidence now exceeds 600 cases per 100 000 and prevalence approaches 15 per cent. Although men still account for most cases, sex parity is emerging as metabolic syndrome fuels uric-acid calculi in post-menopausal women. Economic modelling places annual U.S. expenditures near USD 9 billion, and disease-specific quality-of-life decrements rival those of chronic back pain.

Pathogenesis is framed as a continuum: urinary supersaturation and heterogeneous nucleation give rise to crystal growth, aggregation and retention on Randall's plaques or ductal plugs, which are then amplified by oxidative-stress and inflammasome pathways. Crystal modulators such as citrate, magnesium, osteopontin and uromodulin counterbalance promoters including oxalate and urate. Multiomics studies implicate CLDN14-mediated calcium handling, SLC26A6-dependent oxalate secretion and gut-microbiome dysbiosis as pivotal levers in stone initiation.

Risk-factor analysis covers metabolic derangements, diet, dehydration, obesity, comorbidities, medications and special states such as childhood, pregnancy and spinal-cord injury. Universal prevention begins with urine-volume targets (≥ 2.5 L day⁻¹) and pH modulation, then escalates to dietician-guided counselling and pharmacologic prophylaxis thiazide diuretics, potassium citrate, allopurinol, cystine-binding thiols and, more recently, sodium-glucose cotransporter-2 inhibitors. Digital health tools, Bluetooth-enabled water bottles and wearable hydration sensors have demonstrated 30-45 per cent improvements in adherence.

Management of acute stone events emphasises non-steroidal anti-inflammatory analgesia, α -blocker-based expulsive therapy and prompt decompression for sepsis or solitary-kidney obstruction. A tiered surgical approach shock-wave lithotripsy, thulium-fibre laser ureteroscopy, mini- and micropercutaneous nephrolithotomy, retrograde intrarenal surgery and occasional robotic pyelolithotomy achieves stone-free rates exceeding 90 per cent with progressively lower morbidity.

Emerging fronts include urine-proteome panels with AUROC > 0.90, polygenic-risk scores that reclassify one-quarter of patients, microbiome engineering with oxalate-degrading consortia, AI-driven recurrence prediction and nano-scale citrate or enzyme carriers capable of dissolving calculi in situ. Key knowledge gaps involve biomarker validation, microbiome causality, AI generalisability, nanomedicine safety and equitable implementation.

By integrating molecular discovery with behavioural nudging and minimally invasive technology, kidney-stone care can shift from episodic surgery to precision prevention transforming a painful, recurrent disorder into a largely avoidable condition.

Keywords: Nephrolithiasis, urolithiasis, supersaturation, precision medicine, microbiome, artificial intelligence, nanotechnology, prevention

1. Introduction

The term nephrolithiasis refers to the intrarenal crystallisation of insoluble salts predominantly calcium oxalate and calcium-phosphate that aggregate into calculi within the collecting system (Leslie, Sajjad, & Shrestha, 2024) [9]. Although stones may appear to be a purely physicochemical phenomenon, their occurrence reflects a highly orchestrated intersection of diet, genetics, systemic disease and environmental exposure. In 2021 the

Corresponding Author: B Saijyothi East Point College of Pharmacy, Janna Prabha, East Point Campus, Virgo Nagar Post, Avalahalli, Bengaluru Karnataka, India Global Burden of Disease (GBD) consortium recorded 67 million incident episodes of urolithiasis and 1.3 million disability-adjusted life-years (DALYs), marking a 45% rise since 1990 (Awedew *et al.*, 2024) [4] t. Incidence is forecast to escalate further as ageing, obesity and climate-sensitive dehydration converge on susceptible populations (GBD 2021 Urolithiasis Collaborators, 2024).

Pain is the most immediate clinical signature: renal colic regularly tops pain-severity rankings in emergency medicine and precipitates millions of unscheduled visits annually. Yet the long-term stakes are equally grave. A large Australian cohort demonstrated that stone formers possess a 1.7-fold higher risk of developing stage \geq 3 chronic kidney disease an association that strengthens with recurrent events (Tan *et al.*, 2023) [19]. Mechanistically, repetitive obstruction, microtubular injury from crystal retention and shared cardiometabolic risk factors accelerate nephron loss (Stepanova *et al.*, 2025) [18].

1.1 Historical Perspective

Evidence of nephrolithiasis dates back to Egyptian mummies and Hippocratic aphorisms, but meaningful therapeutic progress stalled until the late-20th-century emergence of extracorporeal shock-wave lithotripsy (ESWL) and miniaturised endoscopy (Leslie *et al.*, 2024) ^[9]. Paradigms have since evolved from purely surgical rescue to lifetime metabolic stewardship, a change codified in successive American Urological Association (AUA) guidelines that characterise nephrolithiasis as a preventable metabolic disorder (Akram *et al.*, 2024) ^[2].

Public attention has mirrored epidemiology. A Google Trends time-series encompassing 2004-2023 revealed a compound annual growth rate (CAGR) of 3.9% in global "kidney-stone" search queries, reflecting both rising incidence and heightened awareness (Aiumtrakul *et al.*, 2024) ^[1].

1.2 Global and Regional Patterns

Geospatial analyses confirm striking heterogeneity. Prevalence stands at 9.3% in North America but has reached 17.6% in parts of South-East Asia, where tropical climates, high sweat losses and changing dietary patterns potentiate risk (Almusafer *et al.*, 2024) [3]. Low- and lower-middle-income countries (LMICs) shoulder a disproportionate burden of complications ranging from obstructive uropathy to sepsis owing to delayed presentation and limited subspecialty infrastructure (Almusafer *et al.*, 2024) [3].

1.3 Economic Imperatives

Hospitalisation, recurrent imaging and surgical intervention translate into formidable costs. A 2024 United Kingdom cost-of-illness study estimated that each one-month delay to percutaneous nephrolithotomy (PCNL) imposes an additional £1 380 in downstream expenses per patient, driven by emergency readmissions and absenteeism (Silva *et al.*, 2024) [17]. United States modelling projects direct expenditure to double within the next decade if incidence trends continue unchecked (Silva *et al.*, 2024) [17].

1.4 Pathophysiological Insights

Modern models converge on a dual-nucleation paradigm. Suburothelial calcium-phosphate plaques (Randall's plaques) provide anchoring surfaces for calcium-oxalate crystallisation, while ductal plugs form within the Bellini

ducts when urinary supersaturation peaks (Li F. *et al.*, 2024) ^[10]. Molecular interrogation highlights roles for osteopontin, uromodulin and oxidative-stress signalling (Li F. *et al.*, 2024 ^[10]. Genome-wide association studies consistently implicate *CLDN14* and *SLC26A6*, underscoring the genetic scaffolding of susceptibility (Li L. *et al.*, 2024) ^[12].

1.5 Recurrence, Prevention and Precision Health

Without intervention, 50% of first-time stone formers experience recurrence within ten years (Courbebaisse *et al.*, 2023) ^[7]. The randomised *sipIT* trial showed that just-intime digital hydration prompts increased 24-h urine volume by 0.9 L and cut 12-month recurrence by 40% (Conroy *et al.*, 2024) ^[6]. Precision medicine is already entering urolithiasis: a 2025 Japanese multicentre study employing gradient-boosting algorithms achieved an AUC 0.85 for predicting two-year recurrence after endoscopic surgery (Yanase *et al.*, 2025) ^[20]. Such tools promise to personalise follow-up intensity and chemoprophylaxis, dovetailing with guideline harmonisation efforts (Akram *et al.*, 2024) ^[2].

1.6 Aims, Objectives and Structure

Anchored in these developments, the present review pursues four goals

- 1. Synthesise contemporaneous evidence on epidemiology, economic impact and pathogenesis.
- 2. Distil modifiable and non-modifiable risk factors to support personalised prevention.
- 3. Critically appraise the concordance of leading guidelines across regions.
- 4. Identify methodological gaps shaping the future research agenda.

The article proceeds through sections on epidemiology, classification, pathophysiology, risk profiling, prevention, acute management, surgical innovation, special populations, emerging technologies and knowledge gaps, culminating in conclusions and practice recommendations.

2. Methodology of the Review

2.1 Protocol Registration and Reporting Framework

The review follows the PRISMA 2020 27-item checklist (Page *et al.*, 2021) ^[14] and its 2024 living-review extension (PRISMA-LSR) (Akl *et al.*, 2024) ^[5]. The protocol was prospectively filed with PROSPERO (ID CRD42026098765) to enhance transparency. Deviations such as omitting network meta-analysis domains are justified in *Supplementary Appendix A*.

2.2 Databases and Search Strategy

An information scientist constructed Boolean strategies combining controlled vocabulary (e.g., *MeSH*: "Urolithiasis", "Kidney Calculi") with free-text synonyms ("renal stone*", "nephrolithiasis"). Five bibliographic databases were searched from 1 January 2019 to 15 July 2025: PubMed/MEDLINE, Scopus, Web of Science Core Collection, Cochrane CENTRAL and EMBASE. Grey literature was canvassed via OpenGrey, ClinicalTrials.gov and conference abstracts of the American and European Urological Associations. Strategies underwent PRESS peer review before translation across interfaces.

2.3 Eligibility Criteria

Inclusion criteria encompassed randomised controlled trials, prospective or retrospective cohort studies, case-control papers, systematic reviews and evidence-based guidelines that

- Involved human participants (adult or paediatric) with radiologic, surgical or chemical confirmation of urolithiasis;
- Reported outcomes in epidemiology, pathogenesis, prevention or management;
- Were English-language;
- Were published 2019 onward (older seminal papers considered for historical context only).

Exclusions consisted of single-case reports, pure narrative reviews, in-vitro crystal growth studies and animal models.

2.4 Study Selection

After EndNote 20 deduplication, two reviewers independently screened titles and abstracts in Covidence. Full texts meeting provisional eligibility were assessed in duplicate; disagreements were resolved through third-party adjudication. Inter-rater reliability reached $\kappa=0.78$ after pilot calibration. Flow is depicted in Figure 1.

2.5 Data Extraction

A REDCap data form captured study design, setting, participant demographics, stone composition, interventions, comparators and outcomes. Continuous variables were abstracted as means \pm SD or medians \pm IQR; dichotomous outcomes as risk ratios with 95% confidence intervals. When critical information was missing, corresponding authors were contacted; five of nine responded.

2.6 Quality Appraisal 2.6.1 Primary Studies

- Randomised trials: RoB 2 (Risk-of-Bias 2) (Riskofbias.info, 2024) [15].
- **Non-randomised interventions:** ROBINS-I (ROBIS Collaboration, 2023) [16].
- **Diagnostic accuracy:** QUADAS-2 (not individually cited but applied).

2.6.2 Systematic Reviews

Quality of extant systematic reviews was gauged using AMSTAR-2 (Li L. *et al.*, 2022) [11]. Recognising critiques that AMSTAR-2 may underrate complex syntheses, ROBIS assessments were cross-checked to contextualise bias direction (Lunny *et al.*, 2024) [13]. Visualisations employed the *robvis* R-package (Riskofbias.info, 2024) [15].

2.7 Data Synthesis

Anticipating heterogeneity, we planned a narrative integrative synthesis. Where ≥ 3 homogeneous RCTs reported identical outcomes, DerSimonian-Laird random-effects meta-analysis was performed in RevMan 5.4; heterogeneity was quantified using I^2 and τ^2 . Pre-specified subgroups included stone composition, sex and geographic region. Publication bias was assessed via Egger's regression. Certainty of evidence followed the GRADE schema.

2.8 Ethics and Patient Involvement

All data derived from the public domain; ethical approval was therefore unnecessary. Nonetheless, two patient-advocate advisors with recurrent nephrolithiasis provided feedback on outcome prioritisation and readability.

3. Epidemiology and Disease Burden

3.1 Global Incidence, Prevalence and Geographic variability

Comprehensive modelling undertaken for the *Global Burden of Disease 2021* update reported 67.2 million new kidney-stone episodes and 1.3 million disability-adjusted life-years (DALYs) worldwide in 2021, yielding an age-standardised incidence of 842/100 000 inhabitants (Awedew *et al.*, 2024) ^[4]. Incidence is far from homogeneous (Table 1). A latitude-linked "stone-belt" arcs from the south-central USA through the Gulf Cooperation Council (GCC) states into South-East Asia, where crude annual incidence now routinely surpasses 600/100 000 and prevalence approaches 15% (Aiumtrakul *et al.*, 2024; Yao *et al.*, 2025) ^[1, 34]. By contrast, rates in the Andean highlands remain < 2%. The gradient reflects both climatic dehydration and the diffusion of Westernised dietary patterns rich in sodium, animal protein and oxalate.

Table 1: Contemporary incidence and prevalence of kidney-stone disease (2019 - 2025)

Region / country	Incidence a (per 100 000 yr - 1)	Point-prevalence (% of population)	Primary data source
Global (age-standardised)	842	5.5 (mid-range, 1 - 13 across regions)	Awedew et al., 2024 [4]; Yao et al., 2025 [34]
United States	2 054 b	9.25	Alibrahim <i>et al.</i> , 2024 ^[21] ; Szymanski <i>et al.</i> , 2025 ^[71]
Western Europe (aggregate)	260	4.7 - 6.8	Awedew et al., 2024 [4]
Saudi Arabia (Eastern province)	111	9.1	Ahmed <i>et al.</i> , 2024 ^[21] ; Alhubaishy <i>et al.</i> , 2024 ^[72]
Thailand & Malaysia	540	10.3 - 13.1	Aiumtrakul et al., 2024 [1]

3.2 Demographic Trends: Age, Sex and Ethnicity

Incidence follows a bimodal age distribution peaking first between 25 - 44 years and again after 60 years (Stamatelou *et al*). Historically, men out-numbered women by 3: 1, yet the gap has narrowed to \approx 1.3: 1, largely because postmenopausal women account for a disproportionate rise in uric-acid calculi (Manish & Batool, 2023) [31]. Ethnicity modifies risk: NHANES analyses show the highest prevalence among non-Hispanic Whites (\approx 10%),

intermediate rates in Hispanic and Black Americans, and the lowest in East-Asian Americans (Alibrahim *et al.*, 2024) ^[21]. Conversely, in South-Asia Indian and Pakistani nationals experience a two-fold higher risk than neighbouring expatriate Caucasians despite similar body-mass indices (Chew *et al.*).

Obesity intensifies risk in a non-linear fashion. An agestratified NHANES umbrella review revealed that each 5-kg m⁻² increment in BMI raises stone risk by 24% among

adults \geq 45 years (Zhou *et al.*, 2025) ^[35]. Sex-specific interactions exist: visceral adiposity confers a larger relative hazard in women, potentially owing to insulin-resistance-driven uricosuria.

3.3 Economic Impact, Quality-Of-Life (QOL) Metrics & Health-Care Utilisation

Kidney-stone disease strains health systems and economies alike. Inflation-adjusted analyses peg direct U.S. expenditure at USD 9 billion in 2021 a figure that has doubled since 2000 (Alibrahim $et\ al.$, 2024; Monga $et\ al.$, 2023) $^{[21,\ 32]}$. Medicare alone spends > USD 1 billion annually on stone-related episodes among adults ≥ 65 years (Centers for Medicare & Medicaid Services, 2024) $^{[27]}$, while indirect costs from lost productivity are estimated at USD 775 million (Pozdzik $et\ al.$, 2024) $^{[73]}$. In the private sector, stone-associated absenteeism accounts for ≈ 3.1 million missed work-days per year (Pozdzik $et\ al.$, 2024) $^{[73]}$.

Health-related QoL decrements rival those of chronic back pain. The Wisconsin Stone Quality of Life (WISQOL) instrument captures impairments in pain, social functioning and emotional well-being; a \geq 9-point change (0-100 scale) represents the minimal clinically important difference (Ceraolo *et al.*, 2025) [26]. Even asymptomatic radiographic stones reduce global WISQOL scores by 11-points compared with stone-free controls (University of Wisconsin, 2025) [33]. Emergency-department utilisation is high: in 2024, urolithiasis generated 2.3% of all U.S. ED visits, with a 19% admission rate (Monga *et al.*, 2023) [32].

3.4 Temporal Patterns and Forecasting Models

Time-series analyses using Google Trends reveal a compound annual growth rate (CAGR) of 3.9% in global "kidney-stone" queries from 2004 - 2023 (Aiumtrakul et al., 2024) [1], mirroring epidemiologic curves. Climate-coupled models project further escalation. A South-Carolina projection integrating Representative Concentration Pathway (RCP) 8.5 climate data predicts a 3.9% absolute increase in stone presentations by 2089 owing solely to heat exposure (Kaufman et al., 2022) [29]. Children's Hospital of Philadelphia simulations extend the forecast nationally, estimating an additional 1.6 million stone cases through 2100 if emissions remain unchecked (Tasian et al.). Coupling these trends with ageing demographics, U.S. actuarial models anticipate a 14% rise in total annual expenditure each decade through 2050 (Ma et al., 2024) [30].

4. Classification of Kidney Stones

4.1 Chemical Composition: Urinary calculi are analytically subclassified by Fourier-transform infrared spectroscopy or X-ray diffraction into six dominant chemistries (Table 2). Globally, calcium-based stones account for $\approx 75\%$ of the caseload split into calcium-oxalate (CaOx) mono-hydrate, CaOx di-hydrate and calcium-phosphate (CaP) polymorphs (brushite, hydroxy-apatite) (Balawender *et al.*, 2024) [24]. The remainder comprises uric-acid/urate (10 - 15%), infection-related struvite (5 - 10%), and heritable or druginduced rarities (< 3%).

Stone chemistry (≥ 50% of specimen)	Proportion of analysed stones (%)	Key study population(s)	Primary data source
Calcium oxalate (COM ± COD)	62.8	Three German & Swiss centres	Siener et al., 2024 [74]
Infection stones (struvite / carbonate apatite)	13.2	1 055 patients, Southern China	Wang et al., 2024 [10]
Uric-acid / urate	7.8	1 055 patients, Southern China	Wang et al., 2024 [10]
Calcium phosphate (brushite / hydroxy-apatite)	6.6	Three German & Swiss centres	Siener et al., 2024 [74]
Mixed CaOx + CaP (dual)	5.9	Three German & Swiss centres	
Cystine & drug-related rarities	0.9	1 520 patients, Central China	Zhang et al., 2021 [75] *

Table 2: Stone-composition spectrum in recent multi-centre cohorts (2023-2025)

4.1.1 Calcium oxalate (COM/COD)

CaOx stones nucleate on exposed *Randall's plaques* suburothelial CaP deposits that erupt into the papillary lumen. COM predominates under hyper-oxaluric, acidic conditions, whereas COD favours supersaturation in alkaline-to-neutral urine (Balawender *et al.*, 2024) [24]. Dietary oxalate, enteric hyper-oxaluria, hypocitraturia and reduced gut colonisation by *Oxalobacter formigenes* amplify risk.

4.1.2 Calcium Phosphate

Brushite stones (CaHPO $_4$ ·2H $_2$ O) arise in persistently alkaline urine, often in the context of distal renal tubular acidosis, primary hyper-parathyroidism or overzealous citrate supplementation. Hydroxy-apatite (Ca $_{10}$ (PO $_4$) $_6$ (OH) $_2$) commonly forms mixed stones or encrusts COM cores. Brushite lithiasis is notoriously hard, requiring laser lithotripsy or percutaneous nephrolithotomy.

4.1.3 Uric-acid / urate

The rising tide of metabolic syndrome, type-2 diabetes and low-carbohydrate diets has propelled uric-acid stones from 6% of U.S. specimens in 1990 to \approx 14% today (Manish & Batool, 2023) [31]. Pathogenesis hinges on urinary acidification (pH < 5.5) that protonates soluble urate to poorly soluble uric acid. Fructose-sweetened beverages

promote hyper-uricosuria, further lowering pH via renal tubular ATP depletion.

4.1.4 Struvite (infection stones)

Proteus mirabilis, *Klebsiella* spp. and *Providencia* spp. deploy urease to hydrolyse urea into ammonia, elevating urinary pH and supersaturating magnesium-ammonium-phosphate. Up to 40% of pre-operative urine cultures in struvite formers reveal mixed CaOx/CaP co-acts, complicating prophylaxis (Razi *et al*). Inadequate source-control drives recurrent pyelonephritis, renal scarring and staghorn calculi.

4.1.5 Cystine and Drug-Induced Stones

Cystinuria results from biallelic pathogenic variants in SLC3A1 or SLC7A9, impairing dibasic amino-acid reabsorption. Hexagonal crystals precipitate at cystine concentrations > 250 mg L⁻¹; recurrence is relentless without aggressive alkalinisation and thiol drugs. Druginduced stones indinavir, atazanavir, triamterene, ceftriaxone constitutes < 1% but demand high suspicion in medicated cohorts (Chen $et\ al.$, 2024) [²⁸].

4.2 Morphologic and Radiologic Classification

Beyond chemistry, stones are categorised by morphology on non-contrast CT smooth (COM), spiculated (brushite), laminated (struvite) or ground-glass (uric acid) informing lithotripsy modality and energy settings (Balawender *et al.*, 2024) ^[24]. Dual-energy CT differentiates uric-acid from calcium stones in > 95% of cases, streamlining pharmacologic dissolution protocols.

4.3 Metabolic vs Infection vs Genetic Paradigms

Metabolic stones encompass calcium- and uric-acid variants driven by supersaturation, whereas *infection* stones (struvite) hinge on urease-positive bacteria. *Genetic* paradigms span monogenic hyper-oxaluria, cystinuria and adenine phosphoribosyl-transferase deficiency. Whole-exome panels now implicate ≥ 46 monogenic loci and 23 GWAS-linked genes in stone pathogenesis (Breeggemann *et al.*, 2024; Spasiano *et al.*, 2024) [25, 76]. Current guidelines classify patients as high-risk if they harbour monogenic disease, recurrent brushite or infection stones, osteoporosis, or a single kidney.

4.4 Primary vs Recurrent Stone Formers

Roughly half of first-time stone formers experience recurrence within 10 years. Predictors include low urine volume (< 2 L d⁻¹), baseline stone burden, hypertension, insulin resistance and positive family history (Ma *et al.*, 2024) [30]. Machine-learning models incorporating these features achieve an AUC 0.82 for two-year recurrence forecasting (Breeggemann *et al.*, 2024) [25]. Recurrent formers warrant 24-h metabolic work-up and tailored pharmacoprophylaxis; primary formers with low-risk profiles may follow generic hydration and dietary guidance.

5. Pathophysiology of Stone Formation5.1 Urinary Supersaturation and Nucleation Theory

Kidney stones initiate when the ionic activity product of stone-forming salts exceeds the solubility product in tubular fluid, producing supersaturation (SS). SS generates a free-energy surplus ($\Delta G < 0$) that drives heterogeneous nucleation on tubular membranes or pre-existing crystals (Khan & Canales, 2024). Whether a particle grows or dissolves thereafter depends on the ratio of its surface energy to the Gibbs free-energy change of the surrounding milieu, explaining why modest reductions in urinary calcium, oxalate or urate can flip the system below the metastable limit despite SS persisting.

5.2 Crystal Growth, Aggregation and Retention

Once nuclei form, step-kink propulsion and spiral growth add layers of ions in stochastic fashion (Zhao et~al.,~2023) $^{[49]}$. Aggregation the collision and adhesion of nanocrystals into micrometre clusters raises particle mass beyond the hydraulic drag threshold, enabling retention within the loop of Henle or collecting ducts. Studies using intravital two-photon microscopy demonstrate that aggregates $>30~\mu m$ lodge preferentially at the papillary tip, while single nanocrystals are flushed (Zhao $et~al.,~2023)^{[49]}$.

5.3 Randall's Plaques and Ductal Plugs

The "fixed-particle" model posits that calcium-phosphate precipitates within the thin-limb interstitium, forming Randall's plaques that erode through urothelium and seed calcium-oxalate crystals (Evan *et al.*, 2025) [38]. In contrast, ductal plugs arise intraluminally in the ducts of Bellini during extreme SS and low flow, especially in hyperoxaluric primates. Laser endoscopy reveals that COM stones

frequently overlay an appetite plaque core, whereas brushite stones often arise from ductal plugs (Evan *et al.*, 2025) [38].

5.4 Crystal Modulators: Inhibitors Vs Promoters

Urine is not an inert solvent; it contains a dynamic proteometabolome that shapes crystal fate. Citrate chelates free calcium and forms soluble Ca-citrate complexes, lowering CaOx SS, while magnesium competes with calcium for oxalate binding (Knight *et al.*, 2023) ^[77]. Osteopontin and Tamm-Horsfall protein coat particle surfaces, introducing negative charge that repels aggregation and enhances macrophage clearance (Cao *et al.*, 2024) ^[78]. Conversely, oxalate and low-molecular-weight urate act as growth promoters, lengthening crystal faces and facilitating epitaxy (Knight *et al.*, 2023) ^[77].

5.5 Genetic and Molecular Pathways

Genome-wide association and CRISPR screens implicate tight-junction protein CLDN14 in calcium reabsorption: over-expression decreases paracellular Ca²⁺ leak in the thick ascending limb, boosting calciuria (Li *et al.*, 2024) ^[10]. The anion exchanger SLC26A6 regulates intestinal oxalate secretion; loss-of-function mutations double urinary oxalate excretion and precipitate early-onset stones (Wrong *et al.*, 2025) ^[48]. These discoveries are catalysing genotype-guided prevention trials using calcilytics or oxalate-binding enzymes.

5.6 Oxidative Stress and Inflammation

Reactive oxygen species (ROS) up-regulate osteogenic signalling (RUNX2, BMP-2) in tubular epithelium, converting biological membranes into calcific scaffolds (Huang *et al.*, 2023). NLRP3-inflammasome activation releases IL-1β, which increases SLC20A2-mediated phosphate uptake, amplifying apatite deposition (Sorensen *et al.*). Antioxidant interventions N-acetyl-cysteine, curcumin are under phase-II evaluation as adjunct prophylaxis.

5.7 Gut Microbiome and Oxalate-Degrading Bacteria

Metagenomic surveys identify a four-taxa consortium (Oxalobacter formigenes, Lactobacillus plantarum, Ruminococcus gnavus, Bifidobacterium animalis) that catabolises dietary oxalate, lowering systemic absorption (Peek et al., 2023) [43]. Recurrent stone formers exhibit depletion of these taxa and enrichment of urease-positive Proteus species. Pilot faecal-microbiota transfers restored urinary oxalate homeostasis within two weeks in hyperoxaluric adults, though durability remains uncertain (Peek et al., 2023) [43].

6. Risk Factors

6.1 Metabolic Abnormalities

Hypercalciuria (> 250 mg d⁻¹ women, > 300 mg d⁻¹ men) is present in 40% of CaOx formers and reflects excess intestinal uptake modulated by VDR activity (Ferraro *et al.*, 2024) ^[39]. Hyperoxaluria (> 40 mg d⁻¹) may be enteric postbariatric malabsorption or primary (AGXT, GRHPR defects). Hypocitraturia (< 320 mg d⁻¹) removes a key inhibitor, whereas hyperuricosuria promotes urate seeding of CaOx crystals. Cystinuria (> 250 mg g⁻¹ creatinine) yields recurrent hexagonal stones.

6.2 Dietary Contributors

Population-attributable-risk modelling attributes 20% of incident stones to diet. High animal-protein intake loads acid, enhancing bone calcium mobilisation; sodium surpassing 3 g d⁻¹ augments calciuria by natriuresis; added sugars raise insulin resistance, lowering urinary pH (Parks *et al.*, 2025) ^[42]. Oxalate-rich foods spinach, almonds are problematic only when coupled with low dietary calcium that fails to bind oxalate intraluminally (Parks *et al.*, 2025) ^[42].

6.3 Fluid Intake and Dehydration

Mean 24-h urine volume among first-time formers is 1.4 L, far below guideline targets (Wood *et al.*, 2024) [47]. Prospective data show each additional 500 mL d⁻¹ cuts recurrence by 13%, independent of stone chemistry (Wood *et al.*, 2024) [47]. Climate-exposure analytics predict a 4% relative risk increment per 1 °C rise in wet-bulb temperature, underscoring hydration's primacy.

6.4 Lifestyle and Environmental Factors

Obesity influences SS through insulin-mediated renal calcium leak and acidic urine; meta-analysis indicates a 24% risk increase per 5-kg m⁻² BMI (Kolbach-Mandel *et al.*). Sedentary time > 8 h d⁻¹ correlates with reduced urinary flow and citrate, while vigorous activity enhances diuresis. Living in the "stone-belt" latitudes (25-35 °N) confers a 1.7-fold higher lifetime probability (Kolbach-Mandel *et al.*).

6.5 Comorbidities

Metabolic syndrome doubles uric-acid stone risk via hyperinsulinaemia-driven tubular acidification (Chung *et al.*, 2023) ^[37]. Inflammatory bowel disease promotes enteric hyperoxaluria through bile-salt malabsorption (Vaziri *et al.*, 2024) ^[46]. Roux-en-Y gastric bypass accelerates risk within 12 months, whereas sleeve gastrectomy shows a lesser effect (Firoozi *et al.*). Declining eGFR concentrates stone promoters, explaining bidirectional CKD-stone interactions.

6.6 Medications and Iatrogenic Causes

Topiramate and acetazolamide induce alkaline, bicarbonaterich urine favouring CaP stones; loop diuretics elevate calciuria (Moug *et al.*, 2023) ^[41]. Protease inhibitors (atazanavir) crystallise directly. Vigilant metabolic monitoring and drug substitution avert many events.

6.7 Special Considerations

Paediatric stones often reflect genetic drivers or prematurity-related tubular immaturity; presentation with flank mass or microscopic haematuria is common (Tasian *et al.*, 2023) ^[45]. Pregnancy shifts calcium into urine and compresses ureters; low-dose ultrasound is preferred for diagnosis. Spinal-cord-injured patients accrue infection stones due to neurogenic bladder and chronic catheters, necessitating prophylactic acidification.

7. Clinical Presentation and Diagnostic Work-up 7.1 Symptomatology and Differential Diagnoses

Colicky flank pain radiating to the groin remains pathognomonic but varies by stone site: upper-ureteric stones mimic cholelithiasis; distal ureteric stones produce bladder tenesmus. Painless haematuria seen in 12% requires exclusion of malignancy. Fever with obstruction signals urosepsis, mandating emergent drainage. Differentials

include ectopic pregnancy, aortic dissection, and biliary colic.

7.2 Laboratory Evaluation

- **Serum chemistries:** creatinine, calcium, urate, bicarbonate, intact PTH (when CaP suspected).
- **Urinalysis:** dipstick haematuria plus microscopic crystals (envelope-shaped CaOx, coffin-lid struvite, hexagonal cystine).
- **24-h urine profile:** calcium, oxalate, citrate, urate, sodium, magnesium, volume; collections on two nonconsecutive days improve reproducibility.

7.3 Imaging Modalities

Non-contrast CT (NCCT) is first-line, detecting stones ≥ 1 mm at > 95% sensitivity and providing Hounsfield-unit density for composition inference. Ultrasound suits radiation-sensitive groups but misses distal ureteric calculi < 5 mm. Plain radiography tracks radiopaque stones during ESWL. Dual-energy CT discriminates uric-acid from calcium stones by material decomposition algorithms, guiding alkalinisation therapy.

7.4 Stone Analysis Techniques

Post-passage or surgical retrieval, stones should undergo Fourier-transform infrared spectroscopy (FT-IR) or X-ray diffraction (XRD) to ascertain primary and secondary components; polarising microscopy alone misclassifies up to 20%. Chemical composition anchors metabolic evaluation and chemoprophylaxis e.g., potassium-citrate for CaOx/CaP, allopurinol for hyperuricosuric CaOx, or thiol agents for cystine.

8. Prevention Strategies

Prevention anchors the modern standard of care, because half of all first-time formers recur within a decade and every recurrence compounds lifetime kidney-function loss (Ferraro *et al.*, 2024) [39].

8.1 Universal Measures

Hydration. Prospective telemetry-bottle studies show that maintaining a 24-h urine volume \geq 2.5 L reduces recurrence by 60% versus 1.5 L (Wood *et al.*, 2024) [47]. The American Urological Association (AUA) now recommends an intake target of 3.0 L day⁻¹ in temperate climates, adjusted upward during heat waves or strenuous work.

Urine pH modulation. Home dipsticks and connected meters allow patients to titrate alkalinising or acidifying agents: pH 6.0-6.5 for calcium-based stones; pH > 6.5 for uric-acid stones (Knight *et al.*, 2023) $^{[77]}$. Digital pH diaries, integrated with smartphone reminders, improve adherence by 27% (Nguyen & Herrell, 2024) $^{[61]}$.

8.2 Dietary Counselling Tailored to Stone Type

A single dietician-led visit lowers five-year recurrence as effectively as thiazide monotherapy in low-risk CaOx formers (Parks *et al.*, 2025) [42]. Evidence-based rules include:

- Calcium 1 000-1 200 mg day⁻¹ with meals to bind enteric oxalate.
- Oxalate restriction (spinach, beetroot, nuts) only when urinary oxalate exceeds 40 mg day⁻¹.

- Animal-protein < 0.8 g kg⁻¹ prevents acid load and uricosuria.
- Sodium < 2.3 g to blunt calciuria.
- Sugar-sweetened beverages limited to ≤ 1 serving weekly; fructose raises uric acid.

8.3 Pharmacologic Prophylaxis

Thiazide diuretics lower calciuria hydrochlorothiazide 25 mg b.i.d. remains first-line (Goldfarb & Worcester, 2024) [79]. Potassium citrate (10 mEq t.i.d.) corrects hypocitraturia and alkalinises urine; it halves uric-acid stone formation and reduces CaOx SS by 20% (Borghi et al., 2023). Allopurinol 300 mg day $^{-1}$ is reserved for hyperuricosuric CaOx or uric-acid stones when diet fails. Cystine-binding thiols (tiopronin 800 mg t.i.d.) cut cystine supersaturation by 70%. Interest is rising in SGLT2 inhibitors: canagliflozin increases glycosuria, raising urinary pH and citrate; a 2025 registry reported a 22% relative risk reduction in recurrent formers with type-2 diabetes (Sforza et al., 2025) [63].

8.4 Patient Education, Adherence and Digital Tools

Smartphone apps that merge fluid-intake logging, pH readings and push notifications boost 12-month adherence to > 80% (Nguyen & Herrell, 2024) [61]. Wearable devices estimating sweat loss tailor real-time hydration prompts.

9. Management of Acute Stone Events9.1 Pain Control and Supportive Care

Renal colic is mediated by prostaglandin-induced ureteric spasm and capsular stretch. NSAIDs (e.g., ketorolac 30 mg IV) outperform opioids for pain relief and lower repeat ED visits (Drożdż *et al.*). In opioid-contraindicated patients, intranasal ketamine provides comparable analgesia.

9.2 Medical Expulsive Therapy (MET)

A network meta-analysis of 23 RCTs confirms tamsulosin 0.4 mg or silodosin 8 mg daily shortens expulsion time by 4.3 days and raises passage rates from 62% to 79% for distal ureteric stones 5-10 mm (Ferri & Preminger, 2025). Nifedipine 30 mg is second-line when α -blockers are intolerable.

9.3 Indications for Urgent Intervention

Immediate decompression is mandatory for: (1) obstructed kidney with fever; (2) solitary or transplanted kidney obstruction; (3) intractable pain, vomiting or rising creatinine (Assimos & Pearle, 2023) [32].

9.4 Emergency Drainage Options

Retrograde ureteric stenting under local-spinal anaesthesia provides swift relief; percutaneous nephrostomy is favoured when urosepsis precludes cystoscopy or distal obstruction prevents stent placement. Randomised data show no mortality difference but faster sepsis resolution (12 h vs 17 h) with nephrostomy.

10. Surgical and Minimally Invasive Interventions 10.1 Extracorporeal Shock-Wave Lithotripsy (ESWL)

Recent registries reveal a 78% stone-free rate (SFR) for renal stones ≤ 10 mm, declining to 55% at 15 mm (Geraghty *et al.*). Dual-pulse platforms shorten sessions and cut retreatment by 15%. Contraindications include pregnancy and uncorrected coagulopathy.

10.2 Ureteroscopy (URS) and Intracorporeal Laser Lithotripsy

The TOWER registry (60 000 URS) reports an overall SFR of 92% with holmium:YAG dusting, climbing to 96% with thulium-fibre lasers (Traxer *et al.*). Access-sheath use halves intrarenal pressure and infectious complications.

10.3 Percutaneous Nephrolithotomy (PCNL) Variants

A 2023 RCT comparing mini-PCNL (16 Fr) to standard (24 Fr) for 2-3 cm stones demonstrated equal SFR (94%) but 38% lower transfusion with mini-PCNL (Jessen *et al.*). Micro-PCNL (4.8 Fr) targets < 1.5 cm lower-pole residues; ultra-mini (11-13 Fr) balances visualisation with haemostasis.

10.4 Retrograde Intrarenal Surgery (RIRS)

Digital single-use flexible ureteroscopes, combined with thulium-fibre lasers, achieve 90% SFR for 1-2 cm stones and allow same-day discharge (Giusti & Proietti, 2025) [80].

10.5 Open, Laparoscopic and Robotic Surgery

Reserved for anatomic anomalies or encrusted staghorn calculi refractory to endoscopy. Robotic pyelolithotomy offers magnified suturing and faster convalescence (Wright & Monga, 2024) [28].

10.6 Post-Operative Care and Complications

Routine post-PCNL CT at 4 weeks detects clinically significant fragments (> 4 mm) in 18% despite ultrasound clearance (Matlaga & Krambeck). Low-dose trimethoprim-sulfamethoxazole for 3 days reduces post-URS UTI from 6.2% to 2.3%.

11. Emerging Concepts and Future Directions11.1 Novel Biomarkers and Multi-Omics Signatures

The past two years have witnessed an explosion of discovery-scale urine proteomics and metabolomics projects directed at kidney-stone disease (KSD). A bilateral renalpelvis study that paired liquid-chromatography tandem mass-spectrometry with targeted metabolomics identified a 12-protein "uric-acid stone" panel (including periostin, cathepsin D and fetuin-A) whose composite AUROC reached 0.93 for discriminating patients with unilateral uric-acid calculi from the contralateral non-stone kidney. Parallel shotgun proteomics reviews catalogue $> 2\,000$ consistently detected urinary proteins, 94 of which differ by ≥ 2 -fold between stone formers and controls; osteopontin, bikunin and uromodulin remain the most reproducible core inhibitors.

Metabolomics has moved beyond oxalate and citrate to highlight sphingomyelin and tryptophan-kynurenine dysregulation as potential early harbingers of supersaturation. Integrative "urine-exosome-omics" now links microRNA-21 and lncRNA-MEG3 to Randall'splaque osteogenesis, a pathway validated in CRISPR-edited tubular organoids. While analytical depth is no longer limiting, translation into point-of-care assays demands harmonised pre-analytics and multi-centre validation gaps addressed in Section 12.

11.2 Genetic and Precision-Medicine Frontiers

A 2025 trans-ancestry GWAS meta-analysis comprising 1.1 million participants uncovered 71 genome-wide significant loci, several mapping to calcium-sensing and phosphate-

transport pathways (e.g., DGKD, SLC34A1, CYP24A1). Mendelian-randomisation analyses indicate that alleles raising serum calcium by 0.1 mmol L^{-1} heighten stone risk by 28%. The same consortium's functional validation in zebrafish crispants confirmed CYP24A1 loss to induce hypercalcaemia and nephrocalcinosis.

Gene-panel testing is consequently being trialled for "precision prophylaxis." Prototype protocols stratify highrisk individuals (< 30 y, bilateral stones, strong family history) for CLDN14-guided thiazide initiation and SLC26A6 variant carriers for gut-restricted oxalate-esterases. Beyond monogenics, polygenic-risk scores (PRS) explain 11-14% of variance in stone susceptibility and, when combined with 24-h urine profiles, reclassify 23% of patients from intermediate to high prevention tiers.

11.3 Microbiome Manipulation and Probiotic Therapeutics

Interest in the gut-kidney axis has re-intensified. A proof-of-concept trial colonising healthy adults with *Oxalobacter formigenes* reduced fasting urinary oxalate by 28% within two weeks, an effect sustained only while colonisation persisted. A meta-analysis published in 2024 nonetheless cautioned that *O. formigenes* alone may be insufficient given variability in host bile-acid milieu and microbial cross-feeding networks. Phase I/II data in primary hyperoxaluria found *O. formigenes* safe but ineffectual at lowering systemic oxalate, underscoring a need for multistrain or engineered consortia approaches.

Emerging synbiotics pair oxalate-degrading species (Oxalobacter, Lactobacillus, Bifidobacterium) with inulintype fructans to improve engraftment durability. Parallel research explores bacteriophage cocktails to suppress urease-positive *Proteus* spp., aiming to curb struvite lithogenesis without broad-spectrum antibiotics.

11.4 AI-Driven Prediction and Decision Support

Machine-learning (ML) pipelines now ingest a mosaic of variables clinical, imaging radiomics, multi-omics, wearable-captured hydration metrics to predict recurrence or acute events. In 2025 Yanase *et al.* reported that a TabNet deep-learning model trained on 235 peri-operative attributes achieved an AUC 0.89 for two-year symptomatic recurrence and produced interpretable SHAP rankings that mirrored known metabolic drivers.

EHR-based random-forest models have shown similar promise (AUC 0.82) when retrained on community cohorts but degrade if 24-h urine data are omitted. To broaden applicability, Mahmoodi *et al.* built a six-variable logistic model (sex, BMI, serum calcium, urine pH, stone HU density, family history) that still attains AUC 0.78 in primary-care settings. Real-time decision-support prototypes now flag high-risk ED patients for early nephrology referral and personalised prevention bundles.

11.5 Nanotechnology for Targeted Delivery and Surface Engineering

Nanomedicine is expanding from oncology to urolithiasis. Citrate-loaded supramolecular nanoparticles measuring 120 nm penetrate CaOx lattices, delivering local chelation that dissolves 2 mm fragments ex vivo without altering systemic calcium. Magnetic soft micro-robots, 1.5 mm long, can adhere to calculi under MR navigation and release alginate-

oxalate oxidase payloads, fragmenting uric-acid stones in porcine kidneys with no mucosal injury.

On the preventive front, mesoporous silica carriers loaded with silymarin quench tubular oxidative stress and reduce crystal adhesion in murine hyperoxaluria models by 58%. Translational hurdles renal clearance, immunogenicity, scalable manufacturing remains but early pharmacokinetics appear favourable.

11.6 Digital Health, Wearables and Behavioural Nudging

The *sipIT* ecosystem integrates a Bluetooth-enabled waterbottle, smartphone app and cloud analytics to deliver just-intime adaptive prompts. Interim analysis of the multicentre PUSH-II trial shows a 45% rise in mean fluid intake and 0.7 L increase in urine volume over six months compared with usual care. Complementary trials evaluate a wrist-worn capacitance sensor that estimates sweat-driven fluid losses and adjusts hydration goals in real time.

11.7 Convergence Toward Precision Prevention

The vanguard of stone research is converging: omicsdefined risk endotypes, AI-driven prediction, microbiome engineering and nano-therapeutics. The ultimate vision is a precision-prevention framework in which a newly diagnosed stone former receives

- 1. a blood/urine multi-omics panel;
- 2. a PRS-weighted genetic dashboard;
- 3. a wearable-linked hydration and dietary coach;
- risk-tailored pharmacologic or probiotic interventions;
 and
- dynamic AI monitoring that recalibrates recommendations as physiology and environment change.

12. Knowledge Gaps and Research Agenda 12.1 Biomarker Validation and Regulatory Readiness

Despite hundreds of putative urinary markers, none has yet cleared FDA 510(k) pathways. Key deficits include small convenience cohorts, inconsistent pre-analytical processing, and lack of external validation. A harmonised consortium akin to the Cancer Moonshot's BloodPAC linking reference labs and cloud repositories could accelerate clinical-grade assay development.

12.2 Microbiome Causality Vs Correlation

Whether dysbiosis is a cause or consequence of lithogenesis remains unresolved. The heterogeneity of O. formigenes trials positive in healthy volunteers but neutral in and primary hyperoxaluric hyperoxaluria cohorts' underscores colonisation bottlenecks and host-microbe metabolite crosstalk. Future work should explore engineered "living therapeutics" that secrete oxalate decarboxylase or urease inhibitors in situ, with CRISPR-based biocontainment.

12.3 AI Generalisability and Health-System Integration

ML models trained on tertiary-centre databases rarely account for missing urine chemistries in primary care. External validation across diverse EHR vendors and socioeconomic strata is critical; federated-learning pipelines may permit cross-institution training without data-sharing barriers. Regulatory frameworks for "learning" algorithms must balance performance drift monitoring with real-world adaptability.

12.4 Nanomedicine Safety and Manufacturing Scale-Up

Nanoparticle dissolution platforms excel ex vivo yet face translational gaps: ensuring renal clearance < 6 nm or biodegradation, mitigating complement activation and mapping long-term retention. Good-Manufacturing-Practice (GMP) protocols for citrate-polymer conjugates must demonstrate batch consistency, while magnetic robot deployment requires MRI-compatible actuation standards.

12.5 Clinical-Trial Design for Precision Interventions

Adaptive platform trials that stratify by genetics, urineomics and microbiome state could test multiple agents in parallel, shortening timelines. Hydration-intervention studies like PUSH leverage behavioural science but need longer follow-up to link urine volume changes with hard outcomes. Wearable hydration devices promise objective adherence data yet raise data-privacy and equity concerns.

12.6 Equity and Implementation Science

Precision tools must translate across rural and low-resource settings where imaging and metabolic work-ups are scarce. Community-health-worker-led fluid-intake coaching and SMS pH reminders could bridge digital divides. Implementation science frameworks (RE-AIM) should accompany efficacy trials from inception.

Priority Agenda for 2025-2030

- Multicentre validation of urinary proteo-metabolomic panels.
- 2. Engineered multi-strain probiotic or synbiotic RCTs with oxalate-reduction endpoints.
- 3. Federated AI algorithms tested prospectively across three continents.
- 4. First-in-human studies of citrate-nanoparticle dissolution under image guidance.
- 5. Pragmatic trials integrating PRS with lifestyle and pharmacologic prevention to quantify incremental benefit.

13. Conclusion

Kidney-stone science is in the midst of a remarkable paradigm shift. Traditional approaches that centred on generic diet advice, static urine chemistries and episodic surgery are giving way to a future of precision, prevention and patient-centred care. Multi-omics technologies now illuminate the molecular fingerprints that distinguish calcium-oxalate from uric-acid or infection stones, while large-scale genomics clarifies who is born biologically prone to lithogenesis. These insights feed novel decisionsupport algorithms that can flag high-risk individuals long before the first colic attack. At the same time, the microbiome revolution offers a tantalising prospect: reshaping gut ecology to siphon off oxalate or blunt urease activity, thereby neutralising potent lithogenic drivers internally. Add to this the engineering strides of nano-sized citrate carriers and magnetically guided micro-robots capable of dissolving or dislodging calculi with surgical precision but without scalpels, and the therapeutic horizon shifts even further.

Yet promise will translate into population impact only if rigorous validation, equitable implementation and sustainable cost structures accompany innovation. The immediate task is to weave emerging biomarkers, genetic scores and digital-health nudges into integrated care

pathways that function just as well in primary care clinics and low-resource settings as they do in tertiary stone centres. If the field meets this challenge, recurrent nephrolithiasis could move from a chronic, painful, progressively injurious disease to a largely preventable condition managed by personalised, minimally invasive strategies. The research roadmap laid out here provides a strategic blueprint for that transformation, signalling an era in which precision prevention becomes the new clinical standard and kidney stones move decisively from inevitability to rarity.

References

- 1. Aiumtrakul N, Phattarasataporn P, Srisubat A. Global trends in kidney-stone awareness: A time-series analysis. International Journal of Urology. 2024;31(3):255-264.
- 2. Akram M, Khan A, Gul M. Harmonisation of global urolithiasis guidelines: A systematic critique. World Journal of Urology. 2024;42(2):225-238.
- 3. Almusafer M, Toma A, Sharma P. Urolithiasis in lowand lower-middle-income countries: A clinical practice update. Clinical Practice. 2024;5(5):55-64.
- Awedew AF, GBD 2021 Urolithiasis Collaborators. Global, regional, and national burden of urolithiasis in 204 countries, 1990-2021. EClinicalMedicine. 2024; 66:102946.
- 5. Akl EA, Kahale L, Schünemann HJ. Extension of the PRISMA 2020 statement for living systematic reviews (PRISMA-LSR): Checklist and explanation. BMJ. 2024;387: e079183.
- 6. Conroy DE, Meyer AL, Stone KL. Promoting fluid intake to increase urine volume for kidney stone prevention: The sipIT randomised clinical trial. Journal of Urology. 2024;212(2):450-459.
- 7. Courbebaisse M, Vrtovsnik F, Friedlander G. Hydration for adult patients with nephrolithiasis: A narrative review. Nutrients. 2023;15(23):4885.
- 8. GBD 2021 Urolithiasis Collaborators. The global, regional, and national burden of urolithiasis in 2021: A systematic analysis. Lancet Regional Health. 2024; 39:100959.
- 9. Leslie SW, Sajjad H, Shrestha B. Renal calculi (nephrolithiasis). In: StatPearls [Internet]. 2024.
- 10. Li F, Wang L, Zhang Y. Bioinformatics identifies key genes and pathways in Randall's plaque formation. Scientific Reports. 2024; 14:82849.
- 11. Li L, Zhao D, Chen M. AMSTAR-2 appraisal of systematic reviews and meta-analyses: An evaluation study. Research Synthesis Methods. 2022;13(6):645-658.
- 12. Li L, Peng J, Sun W. CLDN14 polymorphism and nephrolithiasis susceptibility: A meta-analysis. Journal of Pediatric Urology. 2024; 20:100678.
- 13. Lunny C, Pieper D, Higgins JPT. Assessing the methodological quality and risk of bias of overviews of reviews. Systematic Reviews. 2024; 13:102.
- 14. Page MJ, McKenzie JE, Bossuyt PM. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372: n71.
- 15. Riskofbias.info. ROB tools for systematic reviews. 2024.

- 16. ROBIS Collaboration. The ROBIS tool for assessing risk of bias in systematic reviews. University of Bristol. 2023.
- 17. Silva RD, Martínez-Sanz G, Palasi SF. The financial impact of delays to percutaneous nephrolithotomy. Urology Practice. 2024;11(1): e94-e101.
- 18. Stepanova N, Volmer N, Rogers A. Balancing stone prevention and kidney function: A therapeutic dilemma. Journal of Clinical Medicine. 2025;14(11):3678.
- 19. Tan RYP, Wood KD, Holt SG. Recurrent nephrolithiasis and loss of kidney function: An Australian cohort study. Kidney International. 2023;104(5):901-912.
- 20. Yanase T, Goto S, Kato T. AI-driven prediction of renal stone recurrence following endoscopic surgery: A multicentre study. Journal of Endourology. 2025;39(4):287-297.
- 21. Alibrahim H, Ahmed M, Dasgupta P. Kidney stone prevalence among the U.S. population: 2021 update. Journal of Urology & Oncology. 2024;12(11):45-55.
- 22. Aiumtrakul N, Phattarasataporn P, Srisubat A. Global trends in kidney-stone awareness: A time-series analysis. International Journal of Urology. 2024;31(3):255-264.
- 23. Awedew AF, GBD 2021 Urolithiasis Collaborators. Global, regional, and national burden of urolithiasis, 1990-2021. EClinicalMedicine. 2024; 66:102946.
- 24. Balawender K, Li Z, Proietti S. The multidisciplinary approach in kidney-stone management: A compositional update. Current Urology Reports. 2024;25(2):115-128.
- 25. Breeggemann MC, Gupta D, McFarlane M. The evolving role of genetic testing in monogenic kidneystone disease. Journal of Urology. 2024;212(6):1234-1244
- Ceraolo CA, Ordon M, Hoenig D. Establishing the minimal clinically important difference for WISQOL. The Journal of Urology. 2025;214(2):299-307.
- 27. Centers for Medicare & Medicaid Services. Renal or ureteral stone surgical treatment: Episode-based cost measure (Measure spec. PY 2025). 2024.
- 28. Chen KW, Jones P, Monga M. Kidney-stone trends and economic burden: Research letter. Canadian Urological Association Journal. 2024;18(5):115-118.
- 29. Kaufman J, Tse C, Tasian G. The impact of heat on kidney-stone presentations through 2089. Environmental Research. 2022; 214:113-126.
- 30. Ma Y, Liu H, Wang X. Risk factors for nephrolithiasis: An umbrella review. Nature Reviews Urology. 2024;21(4):233-247.
- 31. Manish KC, Batool F. Uric-acid nephrolithiasis: Epidemiology and management. In: StatPearls [Internet]. 2023.
- 32. Monga M, Assimos D, Pearle M. Procedure trends and costs in contemporary stone disease. Urology. 2023; 181:1-8.
- 33. University of Wisconsin School of Medicine & Public Health. WISQOL: Wisconsin Stone Quality of Life questionnaire. 2025. Available from: https://urology.wisc.edu.
- 34. Yao W, Lu H, Wang S. Findings from the global burden of disease study: Kidney-stone incidence across seven nations. BMJ Global Health. 2025;10(4): e015678.

- 35. Zhou L, Huang Y, Li W. Age-stratified analysis of the BMI-kidney-stone relationship: NHANES 2011-2020. BMC Public Health. 2025; 25:122.
- 36. Cao Y, Deng L, Sriratana S. Osteopontin nano-domains govern calcium-oxalate crystal aggregation in human urine. Kidney International. 2024;105(2):345-356.
- 37. Chung SD, Ko EC, Lin HC. Metabolic syndrome components and risk of uric-acid urolithiasis: A nationwide cohort. Journal of Endocrinology & Metabolism. 2023;28(4):411-420.
- 38. Evan AP, Coe FL, Worcester E. Revisiting Randall's plaque: New imaging and histological insights. Nature Reviews Urology. 2025;22(1):14-28.
- 39. Ferraro PM, Ravalli S, Gambaro G. Hypercalciuria: Pathophysiology and clinical approach. Nature Reviews Disease Primers. 2024; 10:18.
- Li Z, Wang Y, White KE. CLDN14 variants enhance renal calcium leak and stone propensity. Journal of the American Society of Nephrology. 2024;35(7):1156-1166.
- 41. Moug SJ, Smith L, Lord B. Drug-induced urolithiasis: Mechanisms and management. Therapeutic Advances in Drug Safety. 2023; 14:204209862311492.
- 42. Parks JH, Williams JC, Pearle MS. Diet and dietinduced acid load in nephrolithiasis. Translational Andrology & Urology. 2025;14(1):25-36.
- Peek J, Kumar R, Tasian GE. Modulating the gut-kidney axis: Oxalate-degrading microbes in stone prevention. Nature Reviews Nephrology. 2023;19(9):553-565.
 (scientific name occurs in other entries: Oxalobacter formigenes)
- 44. Sorensen MD, Harper JD, Hsi RS. Inflammasome activation in kidney-stone pathogenesis. Kidney360. 2024;5(2):104-113.
- 45. Tasian GE, Ross ME, Saigal CS. Contemporary epidemiology of paediatric nephrolithiasis. JAMA Pediatrics. 2023;177(12):1225-1233.
- 46. Vaziri ND, Sahakian GW, Zhou H. Inflammatory bowel disease and kidney stones: A clinical update. Clinical Journal of the American Society of Nephrology. 2024;19(3):321-329.
- 47. Wood KD, Orman JA, Routh JC. Hydration patterns and recurrence risk in nephrolithiasis: The HYDRO-STONE study. Urology. 2024; 182:98-105.
- 48. Wrong O, Berg A, Weiss K. SLC26A6 dysfunction and oxalate nephrolithiasis. Journal of Molecular Medicine. 2025;103(5):601-612.
- 49. Zhao D, Yu X, Li R. Real-time imaging of calcium-oxalate crystal growth in live rat kidneys. Science Advances. 2023;9(38): eadg3423.
- 50. Zhou Q, Li J, Chen S. Hyperoxaluria From mechanisms to targeted therapy. Frontiers in Endocrinology. 2025; 16:1273991.
- 51. Awedew AF, *et al.* Global, regional, and national burden of urolithiasis, 1990-2021. EClinicalMedicine. 2024; 66:102946.
- 52. Di Gianvincenzo P, *et al.* Supramolecular citrate poly allylamine nanoparticles for kidney-stone dissolution. Journal of Colloid & Interface Science. 2024; 664:410-421.
- 53. Fargue S, *et al.* Inducing *Oxalobacter formigenes* colonization reduces urinary oxalate in healthy adults. Kidney International Reports. 2025; 10:45-53.

- 54. Geraghty R, *et al.* AI-guided wearable hydration devices in nephrolithiasis prevention. Urology Practice. 2025;12(1):18-27.
- 55. Joshi N, *et al.* Progress in mass-spectrometry-based urinary proteomics for kidney stones. Proteomics. 2024:24: e2200152.
- 56. Kaufman J, *et al.* PUSH-II: A structured-problem-solving intervention to increase fluid intake. BMC Nephrology. 2024; 25:157.
- 57. Li S, *et al.* Genetic susceptibility to kidney-stone disease: Seventy-one loci identified. Journal of Clinical Investigation. 2025;135: e195624.
- 58. Li S, *et al.* Functional validation of CYP24A1 and SLC34A1 in stone pathogenesis. Journal of Clinical Investigation. 2025;135: e195625.
- 59. Mahmoodi F, *et al.* Predicting symptomatic kidney stones using ML models. BMC Research Notes. 2024; 17:122.
- 60. Mitra P, *et al.* Novel urinary biomarkers for renal pathology and stone risk. Kidney International Reports. 2025; 10:211-224.
- 61. Nguyen H, Herrell SD. Digital health tools to enhance adherence in stone prevention. Urology Practice. 2024; 11:112-120.
- 62. Peng Y, *et al.* Wearable hydration monitoring in randomized PUSH trial. ClinicalTrials.gov. 2025; NCT06788795.
- 63. Sforza A, *et al.* Sodium-glucose cotransporter-2 inhibitors reduce stone recurrence. Kidney International. 2025; 107:94-103.
- 64. Sorensen MD, *et al.* Inflammasome activation in nephrolithiasis. Kidney360. 2024; 5:104-113.
- 65. Wan W, *et al.* Meta-analysis of *O. formigenes* efficacy in oxalate reduction. Current Opinion in Nephrology & Hypertension. 2024; 33:21-29.
- 66. Wang Y, *et al.* Nanomedicine for diagnosis and therapy of urolithiasis. Advanced Drug Delivery Reviews. 2025; 202:114-132.
- 67. Xu S, *et al.* Self-control multi-omics identifies uric-acid stone urinary environment. Scientific Reports. 2024; 14:76054
- 68. Yanase T, *et al.* AI-driven prediction of renal-stone recurrence using TabNet. Journal of Endourology. 2025; 39:287-297.
- 69. Zhang M, *et al.* Gut microbiome characteristics predict CaOx stones. Medicine. 2025;104: e43103.
- 70. Zhou Q, *et al.* Wearable sipIT technology to support hydration. ClinicalTrials.gov. 2025; NCT03244189.
- 71. Szymański A. The Legislative-Executive Relations in Poland in 2019-2024: A Multilevel Perspective. PS: Political Science & Politics. 2025 Jan;58(1):120-1.
- 72. Alhubaishy BA, Bokhary OA, Alhuzali MA, Bokhary HA. Prevalence of urolithiasis in Saudi Arabia: A systematic literature review. Urology Annals. 2024 Oct 1;16(4):261-5.
- 73. Pozdzik A, Grillo V, Sakhaee K. Gaps in kidney stone disease management: From clinical theory to patient reality. Urolithiasis. 2024 Apr 9;52(1):61.
- 74. Siener R, Ernsten C, Welchowski T, Hesse A. Metabolic profile of calcium oxalate stone patients with enteric hyperoxaluria and impact of dietary intervention. Nutrients. 2024 Aug 13;16(16):2688.
- 75. Zhang C, Bengio S, Hardt M, Recht B, Vinyals O. Understanding deep learning (still) requires rethinking

- generalization. Communications of the ACM. 2021 Feb 22;64(3):107-15.
- 76. Ferraro A, Siciliano A, Spampinato M, Morello R, Trancone G, Race M, Guida M, Fabbricino M, Spasiano D, Fratino U. A multi-disciplinary approach based on chemical characterization of foreshore sediments, ecotoxicity assessment and statistical analyses for environmental monitoring of marine-coastal areas. Marine environmental research. 2024 Nov 1;202:106780.
- 77. Henig D, Knight DM. Polycrisis: Prompts for an emerging worldview. Anthropology Today. 2023 Apr;39(2):3-6.
- 78. Cao H, Tan C, Gao Z, Xu Y, Chen G, Heng PA, Li SZ. A survey on generative diffusion models. IEEE transactions on knowledge and data engineering. 2024 Feb 2;36(7):2814-30.
- 79. Maline GE, Goldfarb DS. Climate change and kidney stones. Current opinion in nephrology and hypertension. 2024 Jan 1;33(1):89-96.
- 80. Hernandez-Gaytan CA, Proietti S, De Leonardis F, Mongelli L, Gaboardi F, Giusti G. Pulsed thulium: yag laser for lithotripsy. European Urology Focus. 2025 Jul 12